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The knowledge of tropical palaeoclimates is crucial for understand-
ing global climate change, because it is a test bench for general
circulation models that are ultimately used to predict future global
warming. A longstanding issue concerning the last glacial maxi-
mum in the tropics is the discrepancy between the decrease in
sea-surface temperatures reconstructed from marine proxies and
the high-elevation decrease in land temperatures estimated from
indicators of treeline elevation. In this study, an improved inverse
vegetation modeling approach is used to quantitatively recon-
struct palaeoclimate and to estimate the effects of different factors
(temperature, precipitation, and atmospheric CO2 concentration)
on changes in treeline elevation based on a set of pollen data
covering an altitudinal range from 100 to 3,140 m above sea level
in Africa. We show that lowering of the African treeline during the
last glacial maximum was primarily triggered by regional drying,
especially at upper elevations, and was amplified by decreases in
atmospheric CO2 concentration and perhaps temperature. This
contrasts with scenarios for the Holocene and future climates, in
which the increase in treeline elevation will be dominated by
temperature. Our results suggest that previous temperature
changes inferred from tropical treeline shifts may have been
overestimated for low-CO2 glacial periods, because the limiting
factors that control changes in treeline elevation differ between
glacial and interglacial periods.

biome model � biome pollen scores � palaeoclimatology � pollen �
vegetation model inversion

Pollen data show a lowering of treeline elevations during the
last glacial maximum (LGM) by �1,000–1,700 m in moun-

tains at a wide range of tropical and subtropical locations (1, 2).
Assuming this decrease corresponds to a decrease in mean
temperature and given a lapse rate of 5–6°C km�1, this would
imply a substantial cooling of �5–10°C in these areas, particu-
larly at high elevations in the tropics (1, 2). However, a new
faunal reconstruction of sea surface temperature (Multiproxy
approach for the reconstruction of the glacial ocean surface:
MARGO) for the tropics indicates a more limited cooling of
�2°C at low elevations during this period (3, 4), which is slightly
more than the �1.5°C estimated by using CLIMAP (5). These
reconstructions are clearly not consistent, and although the
differences could in principle be explained by a steeper atmo-
spheric lapse rate, this parameter needs further validation by
using more reliable data (6–8). Nonetheless, this lack of agree-
ment leaves considerable uncertainty about what the tropical
climate was really like during the last ice age.

Physiological data and models have demonstrated that the
processes that modify carbon and water uptake in plants are
highly dependent on CO2 concentrations (9, 10). This suggests
that modern plant–climate relationships are not representa-
tive of interactions between plants and climate in the past
(9–11), because the atmospheric CO2 concentration has f luc-
tuated significantly between glacial and interglacial periods
(12). Furthermore, simulations using vegetation models by

Jolly and Haxeltine (13) have shown that low atmospheric CO2
concentration could by itself cause the observed replacement
of tropical mountain forests by scrub in Africa during the
LGM. In the same way, palaeoecological �13C data from Africa
(14) also reveal that the lower atmospheric CO2 concentration
during the LGM could have contributed to the decreased
elevation of alpine treelines. These studies suggest that pre-
vious pollen-based estimates of temperature decreases during
the LGM may have been overestimated. A modeling approach
combined with appropriate data is thus necessary to under-
stand these discrepancies (15, 16).

In this paper, we describe our use of an improved inverse
vegetation modeling approach (17) by a physiological process-
based vegetation model, BIOME4 (18), in an inverse mode
(15), and the BIOME6000 pollen data (19) to examine how
changes in atmospheric CO2 concentration and climate might
account for the observed distribution of African mountain
vegetation during the LGM.

Results
We applied the improved model version (17) to modern pollen
samples to validate the approach by reconstructing the modern
climate at each site and comparing it with observed values. High
correlation coefficients (Table 1), intercepts close to 0 (with the
exception of mean temperature of the warmest month and
growing degree days �5°C), and slopes close to 1 (with the
exception of mean temperature of the coldest month) demon-
strated that the inversion method worked well for most variables
and confirmed that the climate signals contained in the modern
pollen data could be quantitatively extracted by means of the
inverse vegetation modeling method. These results confirm the
reliability of the LGM climate and biome reconstructions.

During the LGM, the inverse vegetation model successfully
simulated the biome at all pollen collection sites. The results
show that the change in the mean annual temperature gener-
ally varied from 1 to �3°C and averaged �2°C lower than the
modern value in the tropics but with large error bars (Fig. 1A).
Annual precipitation decreased by between 200 and 1,000
mm�yr�1 relative to the present for equatorial regions (Fig.
1B), and the robust relationship between the percentage
change in precipitation and elevation in tropical Africa (Fig.
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1C) suggests that the changes depended strongly on elevation:
the rainfall decrease was greatest at the highest elevations.

A sensitivity analysis was performed to identify the domi-
nant factors controlling the observed changes in treeline
elevation (Fig. 2). When temperature is increased from its
LGM reconstruction to its modern value, and precipitation
and CO2 are kept at their LGM values [see experiment 1 (E1)
in Materials and Methods], a change in vegetation from steppe
(STEP) to mountain forest (WAMX) is seen at only one site
above the LGM treeline elevation (Fig. 2 B and C), suggesting
that temperature played a relatively limited role in controlling
the treeline shift. When precipitation (E2) and atmospheric
CO2 concentration (E3) change from their reconstructed
LGM value to their modern values, and the other variables are
fixed at their LGM values, the biome at most of the pollen sites
changes from nonforest biomes to forest biomes (Fig. 2 D and
E), in good agreement with modern observations (20) (Fig.
2 A). These last two variables, therefore, seem to be at least
partially responsible for explaining the treeline shift.

To further estimate the relative importance of atmospheric
CO2 and precipitation on treeline changes, we explored the
parameter space between the LGM values and modern values
for precipitation and CO2 concentration (E4) by using steps of
7% and 10 parts per million volume (ppmv), respectively. For
each combination of variables, we plotted the simulated tree-
line elevation (Fig. 3A). Fig. 3A shows that the treeline
elevation changes more quickly in response to changes in
precipitation than to changes in atmospheric CO2 during the
period from the LGM to the beginning of the Holocene [at 270
ppmv CO2 concentration (12)], and that the effect of precip-

itation is approximately one to three times the magnitude of
the change with respect to CO2 in the altitude range from
�1,800 to 3,000 m above sea level (asl) (Fig. 3B). This shows
that precipitation exerted a stronger control on the change in
treeline elevation than the atmospheric CO2 level.

From the start of the Holocene to modern times, treeline
elevation no longer significantly depends on changes in pre-
cipitation and atmospheric CO2, especially at CO2 concentra-
tions �300 ppmv (Fig. 3A), suggesting that these two factors
no longer act as limits. To identify the most important factor
responsible for treeline changes during this period, the sensi-
tivity of elevation between the start of the Holocene and the
modern period was explored as a function of changes in
temperature, precipitation, and atmospheric CO2 (E5) to
extract any information that might have been missed in E4
when temperature was kept at the LGM level. Fig. 3C shows
that the increase in treeline elevation responded most strongly
to temperature increases and was not sensitive to changes in
precipitation and atmospheric CO2 above �3,000 m asl alti-
tude. We obtained similar results for the predicted future
scenario (sites from ref. 21) (E6, Fig. 3C). Under that scenario,
temperature will play the dominant role in the treeline shift.
This can be explained by the fact that water and carbon are
sufficiently available during these periods so they are not
limiting. These factors thus play a secondary role in deter-
mining the forest vegetation in mountainous areas of the
tropics.

Discussion
Previous estimates of the LGM climate in tropical Africa are
based on the modern observation that temperature is a limiting

Table 1. Regression coefficients between the reconstructed climates for Africa using the inverse vegetation model and the observed
meteorological values

Climate proxy Slope Intercept R ME RMSE

Mean annual temperature 0.92 � 0.02 3.43 � 0.45 0.88 1.72 2.46
Mean temperature of the coldest month 0.80 � 0.02 2.54 � 0.45 0.82 �1.35 3.23
Mean temperature of the warmest month 0.88 � 0.02 6.75 � 0.51 0.87 3.67 2.47
Total annual precipitation 1.11 � 0.02 �21.99 � 27.66 0.90 98.25 324.06
Precipitation in January 1.11 � 0.01 �3.12 � 1.39 0.96 7.62 26.84
Precipitation in July 1.07 � 0.02 2.50 � 2.65 0.92 8.82 43.06
Growing degree-days above 5°C 0.92 � 0.02 1,131.59 � 128.21 0.89 634.86 897.17
Ratio of actual to potential evapotranspiration 0.93 � 0.03 2.35 � 1.62 0.81 �1.49 10.21

R, correlation coefficient (� standard error); ME, mean value of the residuals; RMSE, rms error. These values are calculated based on 585 observations.
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Fig. 1. Reconstructed temperature and precipitation changes in Africa as a function of latitude and elevation during the LGM. The values are expressed as
deviations from modern mean values, and error bars represent 95% confidence intervals. (A) Mean annual temperature as a function of latitude. (B) Total annual
precipitation as a function of latitude. (C) Total annual precipitation changes as a function of elevation in tropical regions (23.5°S � latitude � 23.5°N). The solid
line represents the least-squares linear regression. Dashed lines are the upper and lower 95% confidence limits, respectively. The linear relationship is defined
as: Deviation in total annual precipitation (%) � �0.020(�0.005) Elevation � 0.727(�8.861); R2 � 0.540, n � 17, P � 0.0007.

Wu et al. PNAS � June 5, 2007 � vol. 104 � no. 23 � 9721

EC
O

LO
G

Y



factor for treeline elevation (2, 22). The temperature decrease
compared with the modern value is broadly consistent with the
results obtained by using the BIOME3 model (a decrease of
�6°C) (13) if the change in biome is attributed to temperature
alone. In the present study, the cooling of �2°C based on inverse
vegetation modeling is obviously less than previous estimates,
because the improved method allows us to separate out the
effects of changes in temperature, precipitation, and atmo-
spheric CO2 on biome distributions. Other climate reconstruc-
tions based on a best-analogue method that can account for the
effect of a decrease in precipitation of �30% show a modest
reduction in temperature of �3–4°C (23, 24). These estimates
are closer to our results, because they take into account a range
of values for temperature and precipitation, but they neglect the
effects of CO2 concentration. Our results are consistent with the
results of recent MARGO reconstructions of sea surface tem-
perature (�1–3°C of cooling) in the tropics (3, 4), and with
simulations for tropical oceans (�0.8–3.5°C decrease) by using
atmospheric general circulation models (8, 25). The dryer-than-
present condition, at least qualitatively, is in agreement with the
East African lake-level variations reexamined by Barker and
Gasse (26).

Another important result of our study is that the lowering of
the treeline elevation that occurred during the LGM appears
to have been triggered primarily by a dryer-than-normal
period throughout the region, with the lower atmospheric
concentration of CO2 playing a lesser but important role. This
can be explained by two facts: the environment was more

water-limited during the LGM than at present in tropical
Africa (26), and lower concentrations of CO2 amplify the
effect of an arid climate on plants through their effects on leaf
conductance and water-use efficiency (9, 10).

Although the contribution of CO2 fertilization to terrestrial
ecosystems has been uncertain based on currently available
data (27), Cowling and Field (28) have observed a good fit
between modeled and observed response of LAI to changes in
low CO2 for BIOME3, and the predictions of net primary
production (NPP) response to CO2 fertilization in the future
by using the Lund–Postdam–Jena (LPJ) model (29) is also in
agreement with experimental evidence by Norby et al. (27).
Because the treatment of CO2 fertilization in BIOME3 and
LPJ is same as BIOME4, these comparisons indicate that
BIOME4 model can realistically predict the response to the
CO2 fertilization.

Various lines of evidence from fossil pollen (2, 14, 24, 30)
support these results. The most characteristic feature of the
treeline change due to the LGM is that the expansion of moist
montane forest occurred at different rates and times in
different tropical areas (14, 24, 30). This indicates the impor-
tance of regional climate in controlling the treeline, as opposed
to the role of atmospheric CO2, which would lead globally to
a gradual and synchronous increase in the treeline elevation
that followed the change in atmospheric CO2 concentration.
Furthermore, pollen analysis shows a well developed forest
belt in the Central East African mountains at an elevation of
�2,000–2,400 m during the last glacial period between 30 and
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40 kyBP, whereas this vegetation was replaced by nonforest
biomes during the LGM (2, 24, 30). This evidence also does not
support the view that atmospheric CO2 was a dominant
limiting factor in determining treeline elevation, because the
atmospheric CO2 concentration was similar during both peri-
ods (12).

Under the Holocene, modern, and future scenarios, sensi-
tivity analysis revealed that the increased elevation of tropical
mountain treelines was mainly controlled by temperature. This
is in good agreement with the observation that the presence or
absence of trees at treeline under modern conditions is
determined by physiological limits at low temperatures (22).
The dominant role of temperature on tree growth has also
been well established for warm and cool periods of the
Holocene (31). In the past century, the increasingly warm
climate has had a substantial inf luence on shifts in the treeline
in the tropics (32) as well as in other regions of the world (33).

Our results indicate that the limiting factors that control
changes in the elevation of the African treeline differ between
glacial and interglacial periods. Thus, previous estimates of
tropical cooling during the LGM period based on the assump-
tion that treeline depends on temperature seem unrealistic.
Because greenhouse gases have been one major factor affect-
ing tropical temperature at the LGM, the magnitude of the
tropical cooling during the period has an important implica-
tion for Earth’s system sensitivity to changes in atmospheric
CO2 as simulated by general circulation models (34). Our
relatively moderate cooling of �2°C in the tropics suggests that
the earth system is at the moderate side of the range of CO2
sensitivity, at least past atmospheric CO2 forcing.

Materials and Methods
The BIOME6000 project (19) has gathered global pollen data
for three periods: modern, 6,000 � 500 kyBP, and 21,000 � 2,000
kyBP. Each pollen assemblage has been transformed into biome

scores according to its affinity with a set of predefined biomes
and was assigned to the most likely biome. The modern data set
(35) includes 629 pollen spectra in Africa and was used in the
present study to validate the method for more ancient periods.
The LGM data set (35) contains 23 data sites covering an
altitudinal range from 100 to 3,140 m asl.

We used a recent version of BIOME4 (18) and an inversion
technique (15) to estimate climate based on BIOME6000
pollen data. The principle behind this method [see supporting
information (SI) Text] is that we can attempt to estimate the
inputs for the vegetation model (i.e., the climate) if we have
information related to the output of the model (i.e., biome
scores at pollen collection sites). BIOME4 is especially im-
proved in comparison with BIOME3 (36) with respect to arctic
vegetation, and this is an important advantage of the newer
model for the simulation of LGM vegetation at high elevations
in the tropics. However, the biome typology used by BIOME4
is not fully compatible with the biome typology of the pollen
data. We thus defined a transfer matrix to match the BIOME4
typology to the pollen typology (see SI Table 3) that was
qualitatively obtained by examination of the modern pollen
biome score data and modern vegetation maps. This was done
as an alternative to develop an NPP to pollen production
relationship based on an artificial neural network between
modern pollen-derived plant functional types (PFT) scores
and simulated NPP values of the PFT (15). This transfer matrix
is less susceptible than the relationship by Guiot et al. (15) to
being affected by a strong human perturbation of the modern
biomes at pollen collection sites.

To identify the dominant factors controlling the changes in
African treeline elevation, six experiments were carried out.
E1, temperature changed from the LGM value to the modern
value, but precipitation and CO2 remained at their respective
LGM values [CO2 � 200 ppmv for LGM (12)]. E2, precipita-
tion changed from the LGM value to the modern value, but
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temperature and CO2 remained at their respective LGM
values. E3, CO2 concentration changed from 200 (LGM) to
340 ppmv (modern, because the modern pollen samples were
collected in 1970s) (37), but temperature and precipitation
remained at their respective LGM values. E4, all values
between the LGM and the modern values were investigated for
CO2 concentration and precipitation, but temperature re-
mained at LGM values. E5, all values between the start of the
Holocene and the modern period were investigated for CO2
concentrations ranging from 270 (12) to 340 ppmv, tempera-
tures ranging from �2°C below to �2°C above modern values,
and precipitation ranging from �40% below to �40% above
modern values. E6, all values were simulated between the
modern value and the future, with CO2 concentration, tem-

perature, and precipitation ranging (respectively) from 340 to
700 ppmv, �0 to �5°C above the modern value, and precip-
itation �0 to �100% above the modern value.
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